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SUMMARY

Common explicit, Godunov-type schemes are subject to a stability constraint. The time-line interpolation
technique allows this constraint to be eliminated without having to make the scheme implicit or to
linearize the equations. For 2×2 systems of conservation laws, a system of non-linear equations has to
be solved in the general case to determine the left and right states of the Riemann problems at the cell
interfaces. However, if one cell in the domain is wide enough for the Courant number to be locally
lower than unity, it is not necessary to solve a system anymore and the values at the next time step
can be computed directly. The method is detailed for linear and non-linear scalar advection, as well
as for 2× 2 systems of hyperbolic conservation laws. It is illustrated by an application to a simpli@ed
model for two-phase �ow in pipes, which is described using a 2 × 2 system of non-linear hyperbolic
equations. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Godunov-type schemes are a very powerful technique to handle discontinuous �ows arising
from the non-linear character of hyperbolic Partial DiEerential Equations (PDEs). Industrial
applications of these schemes have to cope with irregular geometries and, even for one-
dimensional problems, it may be necessary to re@ne the computational grid locally. Owing
to the classical Courant–Friedrichs–Lewy (CFL) stability constraint associated with classical
explicit schemes, local mesh re@nement leads to time step reduction. This yields an increase of
the computational eEort, as well as a degradation of scheme performance in the regions of the
computational domain where mesh re@nement is not needed. The classical answer of model
developers consists of developing implicit schemes. A number of implicit Godunov-types
schemes have been proposed [1–4]. Although solving the problem of stability—at least in a
linear context (see Reference [2] about problems arising from non-linearity)—these schemes
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568 V. GUINOT

need systems of equations to be inverted, making the computational procedure expensive.
Moreover, some of them introduce a linearization of the PDEs to be solved. Attempts to
increase the accuracy in time lead to bigger systems (see Reference [1]). On the other hand,
explicit schemes have been designed to handle large time steps and extended to multiple
dimensions [5–7]. These methods consider the full extent of the domain of dependence of
the solution in space and therefore lead to variable stencils covering several cells in space
when needed by the time step. In this approach, a particular procedure has to be followed
to take into account the possible presence of several shocks and rarefaction waves within
the domain of dependence of the solution, since these waves may interact or merge within
a single time step. This leads to increased computational time. In References [6] and [7], it
is suggested that an approximate Riemann solver like that designed by Roe [8] could lead
to proper linearization of the conservation laws to be solved and to simplify the handling of
wave interactions.
The proposed approach allows CFL values higher than unity to be used, without having

to make the scheme implicit. It is not necessary either to have recourse to variable stencils
in space, since the scheme uses information contained in the characteristic lines that cross
neighbouring interfaces rather than the value of the variable at the next time level. A somewhat
similar procedure, called time-line interpolation, was used in combination with the Method of
Characteristics in the @eld of hydraulics in the 1970s [9]. In the proposed approach, a system
of equations still has to be solved, unless there is one mesh within the computational domain
where the Courant number is smaller than unity. Moreover, in contrast to the above-mentioned
approach [5–7], the proposed method propagates directly the results of each wave interaction
from one wave to the next, which makes the treatment of such interactions much easier and
faster. Eventually, no linearization of the conservation laws is needed for the treatment of
wave interactions.
Section 2 describes the principle and implementation of the proposed method for linear

and non-linear scalar advection. Section 3 focuses on its application to the 2 × 2 system
of hyperbolic conservation laws that describe two-phase �ows in pipes. Section 4 provides
computational examples for the three types of equations above and Section 5 is devoted to
remarks and conclusions. Appendix A is devoted to the stability and consistency analysis of
the proposed solution for linear advection problems with constant coeMcients. Appendix B
presents a method to solve the generalized Riemann problem.

2. SCALAR ADVECTION

2.1. Linear advection

Consider the Partial DiEerential Equation (PDE) that describes one-dimensional, linear scalar
advection:

@�
@t

+
@F
@x

=0 (2.1a)

F = a� (2.1b)

where � (arbitrary unit) is the advected variable, F (arbitrary unit) is the �ux, a (m s−1) is the
velocity, x (m) is the space-coordinate, and t (s) is time. Equation (2.1a) can be discretized
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UNCONDITIONALLY STABLE EXPLICIT GODUNOV SCHEME 569

according to the @nite-volume approach:

Qn+1
j =Qn

j +
Rt
Rxj

(Fn+1=2
j−1=2 − Fn+1=2

j+1=2 ) (2.2)

where Qn
j is the average value of the solution � over cell j at time level n, Fn+1=2

j+1=2 is the
average value of the �ux at interface j + 1=2 between cells j and j + 1 between time levels
n and n+ 1; Rt (s) is the time step and Rxj is the size of cell j. The average of the �ux
at the interface is given by:

Fn+1=2
j+1=2 =

1
Rt

∫ t n+1

t n
F[�(xj+1=2; t)] dt (2.3)

Assume that a is positive. The integral in Equation (2.3) can be separated into:

Fn+1=2
j+1=2 =

1
Rt

∫ tA

t n
F[�(xj+1=2; t)] dt +

1
Rt

∫ t n+1

tA
F[�(xj+1=2; t)] dt (2.4)

where A denotes the intersection in the (x; t) plane between the characteristic curve issuing
from (j − 1=2; n) and the line (x= xj+1=2) (see Figure 1). tA is given by:

tA= t n +
Rxj
a

(2.5)

In Equation (2.4) the integrals are estimated using a technique that will also be used for
non-linear advection. The �ux function F is computed using the average value of �:∫ t2

t1
F[�(xj+1=2; t)] dt=(t2 − t1)F

[
1

t2 − t1

∫ t2

t1
�(xj+1=2; t) dt

]
for all t1; t2 (2.6)

Equation (2.4) then becomes:

Fj+1=2 =
1
Crj

F
[

1
tA − t n

∫ tA

t n
�(xj+1=2; t) dt

]

+
(
1− 1

Crj

)
F

[
1

t n+1 − tA

∫ t n+1

tA
�(xj+1=2; t) dt

]
(2.7a)

Crj =
aRt
Rxj

(2.7b)

Using the theory of characteristics, it can be shown that the @rst integral in Equation (2.7a)
is equivalent to the average value of � over cell j at time level n. The second integral giving
the average value of � in Equation (2.7a) is transformed into that of � over time at interface
j − 1=2 (see Figure 1):

Fn+1=2
j+1=2 =

1
Crj

F(Qn
j ) +

(
1− 1

Crj

)
F

[
1

tB′ − tA′

∫ tB′

tA′
�(xj−1=2; t) dt

]
(2.8)
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570 V. GUINOT

Figure 1. Sketch of the advection problem in the x–t plane.

where A′ is point (j − 1=2; n) in the (x − t) plane and B′ represents the intersection of the
characteristic issuing from (j + 1=2; n+ 1) and the line (x= xj−1=2). In order to estimate the
average value of � over [A′B′], the average value of � at the interface j − 1=2 between t n

and t n+1 is used. Equation (2.8) then becomes:

Fn+1=2
j+1=2 =

1
Crj

F(Qn
j ) +

(
1− 1

Crj

)
F(�n+1=2

j−1=2 ) (2.9)

where �n+1=2
j−1=2 is the average value of � over time between t n and t n+1 at interface j− 1=2. In

the case of linear advection, for which the �ux is proportional to �, Equation (2.9) can be
rewritten as:

Fn+1=2
j+1=2 =

a
Crj

Qn
j +

(
1− 1

Crj

)
Fn+1=2
j−1=2 (2.10)

Equation (2.10) provides a recurrence relationship that can be used by sweeping the compu-
tational domain in the direction of the �ow.

2.2. Non-linear advection

Consider now the PDE:

@�
@t

+
@F
@x

=0 (2.11)

where the �ux function F is an increasing, convex non-linear function of �. The diEerence
with linear advection is that the celerity �=dF=d� at which the solution propagates is an
increasing function of �. This has consequences on the way Crj used in Equation (2.9) should
be computed.
Consider @rst the case �n+1=2

j−1=2 ¿Qn
j ¿0 (see Figure 2). Due to the diEerence between the

celerities associated with both states, a shock appears. The speed of this shock is given by:

cs =
F(�n+1=2

j−1=2 )− F(Qn
j )

�n+1=2
j−1=2 −Qn

j

(2.12)
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UNCONDITIONALLY STABLE EXPLICIT GODUNOV SCHEME 571

Figure 2. Sketch of a shock moving to the right in the x–t plane. The thin lines show the characteristics
on the right and left sides of the shock.

The location of point A is determined by the value of cs. Therefore, the Courant number Crj
in Equation (2.10) must be computed using the speed of the shock:

Crj =
csRt
Rxj

(2.13)

Conversely, if 06�n+1=2
j−1=2 ¡Qn

j , a rarefaction wave appears. Then, the function �(xj+1=2; t) con-
sists of two zones of constant state, connected by a decreasing function of time. In order to
save computational time, the rarefaction wave is assimilated to a shock, propagating at the
celerity cs given by Equation (2.12). Equation (2.9) can still be used. Although violating the
entropy principle, this approach was found to yield no unrealistic solutions.
Still, Equation (2.13) is valid only when the sign of the wave speed is positive all throughout

the computational domain. However, many physical problems involve the interaction between
waves, the speeds of which are diEerent. Consider for example the case of the inviscid
Burger’s equation, that is used as a computational example in Section 4. For this equation,
the �ux F is given by F =�2 and the wave speed is �=2�. The following Riemann problem:

�(x; t=0)=�n+1=2
j+=2; L¿0 for x6xj+1=2 (2.14a)

�(x; t=0)=�n+1=2
j+1=2; R¡0 for x¿xj+1=2 (2.14b)

is characterized by a positive wave speed on the left-hand side of the initial discontinuity and
a negative wave speed on the right-hand side. At later times, a shock appears, the speed of
which can be determined by applying Equation (2.12):

cs =(�n+1=2
j+1=2; L + �n+1=2

j+1=2; R)=2 (2.15)

The �ux across the interface j + 1=2 will be computed correctly provided the left and right
states of the Riemann problem are properly characterized. Equation (2.13) can therefore be
used only for wave positive wave speeds, i.e. for the characterization of the left states of
the Riemann problems. In order to determine the right states of the Riemann problems at the
cell interfaces, a sweep must be performed from right to left. If the wave speed in a cell is
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572 V. GUINOT

such that the Courant number in this cell is smaller than unity, the left (or right) state of the
Riemann problem is determined as in the standard Godunov method, by taking the average
of the variable over the computational cell.

2.3. Enhancement of stability for non-linear laws

The time-line interpolation technique presented above consists merely of substituting part
of the spatial extent of the domain of dependence of the solution with its corresponding
extent in time (see Figure 3). In the @gure, the domain of dependence of [IB′′] (interface
j + 1=2 between time levels n and n + 1) is classically [IB′′]= [IA′]∪ [A′B′′]. The time-
line transformation consists of using the characteristics-based equivalence between [A′B′′]
and [A′B′]. The condition of existence of a solution to Equations (2:1) or (2:11), i.e. the
existence of a domain of dependence that exceeds the size of cell j, is not violated. As
shown in Appendix A, the present method is only @rst-order accurate. However, it is a little
less dissipative than the classical implicit formulation. In addition, only two points are needed
in each direction of space, which makes easier the implementation of the algorithm for multi-
dimensional advection.
Another remark should be made on the calculation of the Courant number for further use

in Equation (2.9) in the case of non-linear advection. If the propagation celerity of the shock
is underestimated, mass accumulates arti@cially behind the front and oscillations appear, with
the possible consequence of non-linear instability. Such a problem was mentioned by Collins
et al. in 1992 [2]. It is possible to prevent the appearance of oscillations by overestimating
the celerity at which the solution propagates. This approach amounts to increasing the upwind
character of the discretization by overestimating the extent of the domain of dependence. This
technique is used for the extension to 2× 2 systems of conservation laws as described in
Section 3.
When the Courant number is lower than unity, the �ux can be computed directly using the

average of the variable � over the domain of dependence of the characteristic, without having
recourse to the time-line interpolation.

2.4. Treatment of sonic points for non-linear advection

Another problem to be addressed is that of the possible presence of sonic points in the case of
non-linear advection. A sonic point is encountered during the sweep from left to right when

Figure 3. Equivalence of domains of dependence in space and time. Segment [B′′A′] in space is
equivalent to segment [A′B′] in time.
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the wave speed associated with �n+1=2
j−1=2; L is negative and that associated with Qn

j is positive. In

this case, the dependence between �n+1=2
j−1=2; L and �n+1=2

j+1=2; L is broken. The best solution found in

this case consists of replacing the value of �n+1=2
j−1=2; L by the value of � that gives a zero wave

speed (in the case of the Burgers equation, this value is �=0). This substitution guarantees
the independence of �n+1=2

j+1=2; L on the previous values. A similar test must be performed during
the sweep from right to left for the right states of the Riemann problem.

2.5. Algorithm

The considerations above can be summarized in the form of the following algorithm. This
algorithm is valid for linear as well as for non-linear scalar laws.
The @rst step consists of determining the left states of the Riemann problems. The compu-

tational domain is swept from left to right (increasing j), starting from the left-hand boundary.
For each interface, the following operations must be made.

(i) For each interface j + 1=2, determine the wave speeds �n+1=2
j−1=2 = �(�n+1=2

j−1=2; L) and �nj =
�(Qn

j ). They might be positive as well as negative. The maximum of the two is de-
noted by �max. The @rst value �n+1=2

1=2; L is given by the left-hand boundary
condition.

(ii) Compute the corresponding Courant number for the left state of the Riemann problem:
Crj = �maxRt=Rxj.

(iii) Compute the left state of the Riemann problem at the interface using the following
equations:

�n+1=2
j+1=2; L =Qn

j =Crj + (1− Crj)�
n+1=2
j−1=2; L if Crj¿1 (2.16a)

�n+1=2
j+1=2; L =Qn

j if Crj¡1 (2.16b)

The second step consists of determining the right states of the Riemann problems. The
computational domain is swept from right to left (decreasing j), starting from the right-hand
boundary.

(iv) For each interface j+ 1=2, determine the wave speeds �n+1=2
j+3=2 = �(�n+1=2

j+3=2; R) and �nj+1 =
�(Qn

j+1). They might be positive as well as negative. The minimum of the two is
denoted by �min. The value �n+1=2

N+1=2; R at the right-hand boundary N + 1=2 is given by
the boundary condition.

(v) Compute the corresponding Courant number for the right state of the Riemann prob-
lem: Crj+1 =−�inxRt=Rxj+1

(vi) Compute the left state of the Riemann problem at the interface using the following
equations:

�n+1=2
j+1=2; R =Qn

j+1=Crj+1 + (1− Crj+1)�
n+1=2
j+3=2; R if Crj+1¿1 (2.17a)

�n+1=2
j+1=2; R =Qn

j+1 if Crj+1¡1 (2.17b)
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574 V. GUINOT

The third step is the solution of the Riemann problem at the cell interfaces. The left state of
the Riemann problem at the cell interface j+1=2 is given by �n+1=2

j+1=2; L while the right state is

given by �n+1=2
j+1=2; R. Any standard Riemann solver can be used for this purpose. The �uxes at

the cells interfaces are determined from the solution of the Riemann problems and used in
Equation (2.2) to compute the balance over the computational cells and advance to the next
time step.

3. 2× 2 SYSTEMS OF NON-LINEAR CONSERVATION LAWS

3.1. Inner cells

The system of conservation laws that describes low-void ratio pipe transients is considered
here. When the amount of gas in the pipe is small, it is possible to describe the two-phase
system with a single �uid [10; 11]. This model is called the ‘single component approximation’.
In the absence of friction, the equations to be solved are the following:

@M
@t

+
@F
@x

=0 (3.1a)

M=
[
�
q

]
; F=

[
q

Ap+ q2=�

]
(3.1b)

d
d�

(Ap)= c2 =
c2w

1 + �=p1+1= (3.1c)

�= !0"0c2wp
1= 
0 (3.1d)

p! =p0! 0 (3.1e)

"g!="g;0!0 (3.1f)

where A (m2) is the pipe cross-sectional area, c (m s−1) is the local speed of sound in the
mixture, cw (m s−1) is the local speed of sound in the absence of gas, p (Pa) is the pressure,
p0 (Pa) is a reference pressure, q (kg s−1) is the mass discharge,  (dimensionless) is a
coeMcient characterizing the behaviour of the gas fraction, ! (dimensionless) is the fraction
of volume occupied by the gas phase, !0 (dimensionless) is the value of ! for the reference
pressure p0, � (kg m−1) is the mass per unit length of pipe, "g (kg m−3) is the �uid density
and "g;0 (kg m−3) is the �uid density at pressure p0. Equations (3.1c,d) for the celerity are a
generalization [12] of a formula provided by other authors [10; 13] under the assumption of
no slip between the gas and the liquid phases. Isothermal and adiabatic gas behaviours can
be obtained by setting  equal to 1 and 1.4 respectively. Equation (3.1a) can be rewritten in
the classical non-conservative form:

@M
@t

+ J
@M
@x

=0 (3.2a)

J=

[
0 1

c2 − u2 2u

]
(3.2b)
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The eigenvalues �k and eigenvectors e(k) of J are well known:

�k = u+ (−1)kc k=1; 2 (3.3a)

e(k) =

[
1
�k

]
k=1; 2 (3.3b)

Although the celerity is highly dependent on the pressure p and may drop down to extremely
low values, the conditions under which pipe systems are operated are such that the �uid
velocity u is in general not higher than a few m s−1. For this reason, it is extremely unusual
to @nd supercritical conditions. Most of the time, the eigenvalues of the 2× 2 system have
opposite signs. The sequel focuses on subcritical �ow.
The �ux at interface (j + 1=2) is obtained from the solution of a Riemann problem at the

interface:

M(x) =Mj+1=2; L for x6xj+1=2 (3.4a)

M(x) =Mj+1=2; R for x¿xj+1=2 (3.4b)

The key of the algorithm lies in the estimate of Mj+1=2; L and Mj+1=2; R. By de@nition (see
Reference [11] and Appendix B), the following relationships are valid (see Figure 4):

Mj+1=2; L =
1
Rt

∫ B

I
M−
j+1=2(t)dt (3.5a)

Mj+1=2; R =
1
Rt

∫ B

I
M+
j+1=2(t)dt (3.5b)

where M−
j+1=2(t)=Lim'→0− M(x= xj+1=2 + '; t) and M+

j+1=2(t)=Lim'→0+ M(x= xj+1=2 + '; t). Con-
sider Mj+1=2; L alone. The integral in Equation (3.5a) can be separated into two parts:

Mj+1=2; L=
1
Rt

∫ L

I
M−
j+1=2(t) dt +

1
Rt

∫ B

L
M−
j+1=2(t) dt (3.6)

Figure 4. Sketch of the method for a 2× 2 system of equations.
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where L is the intersection of the characteristic passing at (j−1=2; n) and interface j+1=2 in
the (x; t) plane. The @rst integral on the right-hand side of Equation (3.6) can be approximated
by:

1
Rt

∫ L

I
M−
j+1=2(t) dt ∼=

(L
Rt

1
Rxj

∫ L′

I
Mn(x) dx=Qn

j (3.7)

where (L is the time corresponding to the location of L on the time axis. The second integral
is evaluated as:

1
Rt

∫ B

L
M−
j+1=2(t) dt=

Rt − (L
Rt

1
(L′′ − (L′

∫ L′′

L′
M−
j−1=2(t) dt (3.8)

where (′L and (′′L are the times corresponding to the locations of L′ and L′′ on the time axis
respectively. Assuming once again that M−

j−1=2(t) is constant, this reduces to:

1
Rt

∫ L′′

L′
M−
j+1=2(t) dt=

Rt − (L
Rt

Mn+1=2
j−1=2; L (3.9)

The only task left is the estimate of the time (L. As explained in Section 2.2, in order to avoid
oscillations and possible instabilities, it is chosen to overestimate the slope of the characteristic
issuing from A′. (L is then given by:

(L =
Rxj−1

max(�n2; j ; �2; j−1=2; L)
(3.10a)

�n2; j = unj + cnj (3.10b)

�n2; j−1=2; L = uj−1=2; L + cj−1=2; L (3.10c)

where unj and cnj are the velocity and local speed of sound over cell j at time level n and
uj+1=2; L and cj+1=2; L are the velocity and local speed of sound derived from the left state of
the Riemann problem at the interface j + 1=2. Finally, Equation (3.6) becomes:

Mj+1=2; L=
(L
Rt

Qn
j +

(
1− (L

Rt

)
Mj−1=2; L (3.11)

A similar reasoning for the right state of the Riemann problem yields:

Mj+1=2; R=
(R
Rt

Qn
j+1 +

(
1− (R

Rt

)
Mj+3=2; R (3.12)

where (R is given by:

(R =− Rxj
min(�n1; j+1; �1; j+3=2; R)

(3.13a)

�n1; j+1 = unj+1 − cnj+1 (3.13b)

�n1; j+3=2; R = uj+3=2; R − cj+3=2; R (3.13c)
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Once Mj+1=2; L and Mj+1=2; R are known, the Riemann problem can be solved using standard tech-
niques. The solver that was retained is an approximate-state solver, based on the assumption
of two rarefaction waves. The values �n+1=2

j+1=2 and qn+1=2
j+1=2 of � and q at the interface are found

by solving the following diEerential relationships [11; 12]:

qn+1=2
j+1=2 − qn+1=2

j+1=2; L=
1
2
(un+1=2

j+1=2 − cn+1=2
j+1=2 + uj+1=2; L − cj+1=2; L)(�

n+1=2
j+1=2 − �n+1=2

j+1=2; L) (3.14a)

qn+1=2
j+1=2 − qn+1=2

j+1=2; R=
1
2
(un+1=2

j+1=2 + cn+1=2
j+1=2 + uj+1=2; R + cj+1=2; R)(�

n+1=2
j+1=2 − �n+1=2

j+1=2; R) (3.14b)

Once Mn+1=2
j−1=2 and Mn+1=2

j+1=2 are known, the numerical solution can be advanced in time using the
classical formula:

Qn+1
j =Qn

j +
Rt
Rxj

[F(Mn+1=2
j−1=2 )− F(Mn+1=2

j+1=2 )] (3.15)

Note that the assumption of two rarefaction waves for the Riemann solver is made a priori,
regardless of the real wave pattern present in the solution. This assumption is not checked
a posteriori, but theoretical considerations [14] as well as numerical experiments [10; 13] show
that this assumption yields a fairly good approximation of the variable within the region of
intermediate state, even if shock waves are present in the solution.

3.2. Boundary conditions

Equations (3.11) and (3.12) form two sets of N recurrence relationships. Provided that M1=2; L

is known (average value of M at the left-hand boundary of the computational domain), the
values Mj−1=2; L can be determined by performing a single sweep along increasing j. Similarly,
provided that MN+1=2; R is known at the right-hand boundary of the computational domain
(N being the number of computational cells in the domain) Mj−1=2; R can be calculated by
performing a sweep along decreasing j. The sequel explains how to determine the values
M1=2; L and MN+1=2; R.
Consider the left-hand boundary. It was shown in a previous publication [12] that the

following conditions must be satis@ed at the boundary:

qB − q1=2; R = 1
2(uB + cB + u1=2; R + c1=2; R)(�B − �1=2; R) (3.15a)

fB(�B; qB) = 0 (3.15b)

where qB and �B are the (unknown) average values of q and � at the boundary between time
levels n and n+ 1. fB is a function that re�ects the nature of the boundary (e.g. prescribed
discharge, prescribed pressure, relationship between pressure and discharge, etc.). As there are
N +1 interfaces in the system, there are 2N +2 unknowns qj+1=2; �j+1=2. These unknowns are
related by N − 1 equations of the form of Equation (3.11) and N equations of the form of
Equation (3.12) for the inner interfaces, and two sets of equations of the form of Equation
(3:15a; b) for the boundaries. Since the number of equations matches the number of unknowns,
the problem can be solved. The system of equations is 4-diagonal and can be solved easily
using a classical double-sweep algorithm [15]. A much easier solution consists of sweeping
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the domain twice in each direction, so that boundary conditions are correctly accounted for.
Experience shows that more iterations are in general not needed.
There is a case where the inversion of a system is not needed: if the time step and the

sizes of at least one cell m in the computational domain are such that the Courant number in
this cell is lower than unity, the following procedure can be followed.

(i) Average the reconstructed pro@le of the variable at time level n over the domain of
dependence of the second characteristic issuing from interface m+ 1=2. It was shown
in an earlier work [16] that this average value can be taken as an approximation for
Mm+1=2; L.

(ii) Use Equation (3.11) to determine the values M j+1=2; L for ascending j.
(iii) Average the reconstructed pro@le of the variable at time level n over the domain of

dependence of the @rst characteristic issuing from interface N+1=2. This average value
gives MN+1=2; R.

(iv) Use Equation (3.12) to determine the values Mj+1=2; R for descending j.

A similar sequence can be repeated for the cells located to the left of cell m. The sequence
of operations (i)–(iv) is no more time-consuming than classical explicit techniques. The values
at the boundaries can be determined using a standard iterative technique. In References [11]
and [12], the Newton–Raphson method was used.

3.3. Courant numbers smaller than unity

As shown in Appendix A, time-line interpolation is stable only for Courant numbers greater
than unity. In cells where it is lower than 1, a classical explicit formulation must be used.
Application of the DPM technique to reconstruction of pro@les in space has been demonstrated
in an earlier publication [11]. Mj+1=2; L can be approximated with a reasonable precision by
the average of the reconstructed pro@le over the domain of dependence of the characteristic
heading to the right (see Appendix B). Conversely, Mj+1=2; R can be taken equal to the average
of the reconstructed pro@le over the domain of dependence of the characteristic heading to
the left.

4. COMPUTATIONAL EXAMPLES

4.1. Scalar equations

The proposed method was applied to the scalar linear advection equation and to the inviscid
Burger’s equation. For the linear advection equation, the advection velocity was set equal to
1 m s−1 everywhere, with a time step Rt=1 s. The cell size was taken equal to Dx=1 m
everywhere, except between x=10 m and 15 m, where it was taken equal to 0:2 m. Conse-
quently, the Courant number is equal to 5 between x=10 and x=15 and to unity everywhere
else. Figure 5 shows the simulation results for an initially square pro@le of width 10 m after
20 computational time steps. In order to facilitate comparison with standard methods, the
numerical solution obtained using the time-line interpolation is compared to that given by the
classical @rst-order upwind implicit scheme. It can be seen that the proposed approach leads
to much less numerical diEusion and less phase error than the standard implicit approach.
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Figure 5. Solution of the linear advection equation after 20s over an irregular mesh using the @rst-order
implicit (upwind) scheme and the time-line interpolation scheme. The Courant number is equal to 5

between x=10 and x=15, and equal to 1 everywhere else.

The method was applied to the solution of the inviscid Burgers equation over a regular
mesh for an initially square pro@le. The cell size was taken equal to 1 m everywhere, the
computational time step was taken equal to 0:5s. The minimum value of � was 1ms−1 and its
maximum value was 2m s−1, therefore the Courant number is comprised of between 1 and 2
in the present simulation. The behaviour of the analytical solution is well known: the front of
the pro@le is a shock and its tail degenerates into a rarefaction wave. It is easy to check that
at t=10 s, the head of the rarefaction wave catches up the shock wave and that the resulting
pro@le is triangular. Figure 6 shows the analytical solution at t=10s and the computed pro@les
obtained using the proposed time-line interpolation method and the classical @rst-order implicit
upwind scheme. As in the linear case, the @rst-order upwind scheme introduces a stronger
diEusion and a larger phase error than the time-line interpolation.

4.2. 2× 2 system of conservation laws for two-phase 5ow in pipes

The system of Equation (3:1) was solved to simulate the �ow resulting from a sudden pressure
drop at the extremity of a pipe (see Reference [12] for more details on this test case). At the
beginning of the simulation, the �uid is assumed to be at rest. The pressure drop is assumed
to occur instantaneously at the left-hand end of the pipe. At the right-hand end of the pipe,
the pressure is kept equal to its initial value.
The �uid and pipe properties can be found in Table I. Table II summarizes the initial and

boundary conditions.
A @rst calculation was carried out over a period of 80s using the classical explicit Godunov

scheme [12] for a uniform cell size Rx=100 m. The time step was limited so that the
maximum Courant number over all cells was equal to unity. A second calculation was carried
using an irregular discretization: between x=1400m and x=1600m, the 14th and 16th cells,
of equal length Rx14 =Rx16 = 99:5 m were separated by a cell of length Rx15 = 1 m. All
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Figure 6. Solution of the inviscid Burger’s equation after 10 s using the @rst-order implicit (upwind)
scheme and the time-line interpolation scheme. The Courant number is comprised between 1 and 2.

Table I. Physical parameters for test case 1.

Parameter Symbol and unit Value

Pipe length L (m) 3000
Nominal cross-sectional area A0 (m2) 0.29
Nominal celerity c0 (m s−1) 981.4
Nominal density "0 (kg m−3) 992
CoeMcient in the perfect gas equation  (—) 1
Reference mass per unit length �0 (kg m−1) 289.9
Reference void fraction !g; 0 (—) 2× 10−3

Reference pressure p0 (Pa) 101 325

Table II. Initial and boundary conditions for the test case.

Parameter Symbol and unit Value

Initial mass discharge qi (kg s−1) 0
Initial pressure Pi (Pa) 5× 105

Pressure at the left end of the pipe pLE (Pa) 105

Pressure at the right end of the pipe pRE (Pa) 5× 105

other cells remained unchanged. No time-line interpolation was used and the time step Rt
was therefore chosen such that the maximum Courant number in cell 15 of width Rx=1 m
was equal to unity. This leads to a maximum Courant number of about 10−2 in the other
cells. A third calculation was carried out on the same grid using the time-line interpolation
technique. The time step was taken equal to that of the @rst calculation. A maximum Courant
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number of 100 was therefore achieved in cell 15. Note that, owing to stability constraints,
the computational time step in the second calculation was 100 times smaller than it was in
the @rst and third simulations.
Figure 7 shows the computed pressure pro@les at various times for the three calculations.

Figure 7(a) shows the computational results for a uniform cell size, Figure 7(b) shows the
results obtained with the irregular grid without time-line interpolation and Figure 7(c) shows
the calculation results on the irregular grid with time-line interpolation. It can be seen that,
when the explicit formulation is used, the time step reduction induces a strong damping of
the computed pro@le (Figure 7(b)). This is particularly visible in cell 15, where the pro@le is
almost �at. Pro@le damping can also be observed quite clearly on the tail of the rarefaction
wave heading to the right at time t=2s. The time-line interpolation eliminates these problems
to a large extent.
Figure 8 shows the pressure history recorded at the middle of the pipe for the three cal-

culations. In the @rst calculation, x=1500 m corresponds to the interface between cells 14
and 15. The value of the pressure at the interface was computed by averaging the values of
the pressure in these cells. In the second and third calculations, x=1500 m corresponds to
the centre of cell 15 and therefore no averaging was needed. The @gure con@rms the strong
damping introduced by the time step limitation in the second simulation. The time-line in-
terpolation technique, which allows bigger time steps to be used, was seen to produce no
noticeable diEerence with the simulation carried out on the regular grid.

5. CONCLUSIONS

The time-line interpolation technique uses the theory of characteristics to provide an equiva-
lence between the space- and time-dimensions of the domain of dependence of the numerical
solution. This equivalence allows computational grids to be designed in such a way that cal-
culations can be carried out without leading to numerical instability. Besides the equivalence
between the time and space extents of the domain of dependence, the key point in the stabi-
lization of the scheme is the overestimation of propagation celerity. This allows oscillations
in the computed pro@les to be eliminated. Time-line interpolation allows simulations to be
carried out at Courant number values greater than unity. The implementation of this method
for the simulation of low-void ratio pipe transients proves to be successful and to increase
the accuracy of the numerical solution considerably, especially when local grid re@nement
is needed. Ongoing research focuses on the design of higher-order time-line interpolation
techniques.

APPENDIX A: LINEAR STABILITY ANALYSIS

A.1. Consistency analysis

Consider linear scalar advection, where the �ux is given by Equation (2.2a). In this case, the
recurrence relationship for the �ux at the cell interfaces is given by Equation (2.10):

Fj+1=2 =
a
Crj

Qn
j +

(
1− 1

Crj

)
Fj−1=2 (2.10)
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Figure 7. Computed pressure pro@les at various dates using the DPM scheme without
grid re@nement (a), with grid re@nement without time-line interpolation (b), and with grid

re@nement and time-line interpolation (c).
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Figure 8. Pressure history at the middle of the pipe using a regular grid and an irregular one, with and
without time-line interpolation.

Substituting Equation (2.10) into Equation (2.2) yields:

Qn+1
j =Qn

j +
Rt
Rxj

[
Fn+1=2
j−1=2 − a

Cr
Qn
j −

(
1− 1

Crj

)
Fn+1=2
j−1=2

]
(A1)

This can be simpli@ed into:

Fj−1=2 = aQn+1
j (A2)

The scheme of Equation (2.2) can @nally be rewritten as:

Qn+1
j =Qn

j + Crj(Qn+1
j −Qn+1

j+1 ) (A3)
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which is a @rst-order, implicit formulation. The truncation error associated to this formulation
is given by:

TE=
Rt2

2
@2�
@t2

− Cr
Rx2

2
@2�
@x2

+ HOT (A4)

Using the classical relationship, obtained from the discretization:

@2�
@t2

= a2
@2�
@x2

+ HOT (A5)

Equation (A4) can be rewritten as:

TE=
Rx2

2
(Cr2 − Cr)

@2�
@x2

+ HOT (A6)

The proposed formulation also introduces a positive diEusion coeMcient in the truncation
error when the Courant number is strictly greater than unity. The algorithm is then @rst-order
accurate and stable for Courant numbers greater than unity. Note that it is diEerent from the
classical implicit formulation that uses:

Fj−1=2 = aQn+1
j−1 (A7)

and for which the truncation error is:

TE=
Rx2

2
(Cr2 + Cr)

@2�
@x2

+ HOT (A8)

A.2. Stability analysis

The stability analysis consists of seeking the solution to Equation (A3) in the form:

Qn
j =K exp(i�rnRt − �inRt) exp(i�jRx) (A9)

where K , �i, �r and � are real constants. Assuming that the Courant number is constant and
equal to Cr, substituting Equation (A9) into Equation (A3) yields:

AN =1+ Cr[AN − AN exp(i�Rx)] (A10a)

AN = exp(i�rRt − �iRt) (A10b)

where AN is called the numerical ampli@cation factor. Equation (A10a) yields directly the
expression for AN :

AN =
1
z

(A11a)

z=1+ Cr[exp(i�Rx)− 1] (A11b)

The modulus of the numerical ampli@cation factor is the inverse of the modulus of z.
Figure A1 gives a graphical representation of the location of z in the complex plane. z
is located on a circle of radius Cr, the centre of which is located at 1−Cr. For Cr¿1, z is
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Figure A1. Time-line interpolation: graphical interpretation for the numerical ampli@cation factor. The
complex number z is the inverse of AN .

located outside or on the unit circle in the complex plan. Consequently, |z|¿1, hence |AN |61.
The discretization is always stable for Cr¿1. In addition to the numerical ampli@cation factor,
the global ampli@cation factor AG gives useful information on the behaviour of the scheme
[13]. It is de@ned as follows:

AG =A1=Cr
N (A12)

which represents the factor by which a wave of given length is ampli@ed over a @xed amount
of time, whereas the numerical ampli@cation factor represents the amount by which the wave
is ampli@ed over one time step. For practical purposes, the information provided by the global
ampli@cation factor is more useful than that provided by the numerical ampli@cation factor,
because the length of the simulation is the interesting quantity to modellers.
The numerical celerity convergence factor cN is given by:

cN =− �r

a�
=−Arg(AN )

a�Rt
=−Arg(AN )

Cr�Rx
=

Arg(z)
Cr�Rx

(A13)

The argument of z can be deduced easily from Equation (A11b):

Arg(z)=Arc tan
[

Cr sin(�Rx)
1− Cr + cos(�Rx)

]
(A14)

Substituting Equations (A8) and (A7) into Equation (A6) yields:

cN =
Arc tan

[
Cr sin(�Rx)

1− Cr + Cr cos(�Rx)

]
Cr�Rx

(A15)

Figure A2 display the amplitude and phase portraits for the present discretization. AN , AG and
cN are given as functions of the wave number M =22=(�Rx). It can be seen in particular that
the extremely diEusive behaviour of the scheme at high Courant numbers is compensated for
since, owing to the larger time step, the computations have to be repeated fewer times than
for small values of the Courant number. Figure A2(b) also shows that the uniform time-line
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Figure A2. Amplitude and phase portraits for the uniform time-line interpolation. Numerical (a) and
global (b) ampli@cation factor, celerity convergence factor (c). The wave number M is de@ned as

M =22=(3Rx). The spacing of the contour lines for the global ampli@cation factor (b) is 0:05.

interpolation exhibits minimum performance for intermediate values of the Courant number
(between 2 and 40).

APPENDIX B: PROFILE AVERAGING FOR THE RIEMANN PROBLEM

The considerations presented in the present Appendix have already been developed in a pre-
vious publication [6]. They are presented here for the sake of clarity only.
Consider @rst the case where the Courant number is lower than unity, that is where the

time step is too small for the characteristics to cross the cell. Assume that the initial pro@le
of M (obtained from a reconstruction) is known at time level n. At the interface between
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two computational cells, this reconstructed pro@le is used to de@ne the Riemann problem by
averaging the eigenvectors over their domain of dependence. The �ux at the interface is given
by:

Fj+1=2 = F(�j+1=2)=F(K�j+1=2) (B1a)

K=

[
1 1
�1 �2

]
(B1b)

�k = q=�+ (−1)kc (B1c)

where K is the matrix formed by the eigenvectors of the Jacobian matrix J= @F=@M (see
Section 3), �k ; k=1; 2 are the eigenvalues of J, and �=K−1M contains the coordinates of
M in the base of the eigenvectors. In the case of a Riemann problem, i.e. with constant right
and left states, �j+1=2 is a constant. But in general, the reconstructed pro@le is not constant
over space. This type of problem is referred to as a generalized Riemann problem. In that
case, the value of �j+1=2 depends on time. We are therefore interested in the average Fj+1=2

of the �ux Fj+1=2 over time:

UFj+1=2 =
1
Rt

∫ Rt

0
Fj+1=2(t) dt (B2)

To estimate this value, a linearization is applied to approximate UFj+1=2 with:

UFj+1=2 = F(K U�j+1=2) (B3a)

U3j+1=2 =
1
Rt

∫ Rt

0
�j+1=2(t) dt (B3b)

The kth component U�(k)j+1=2 of U�j+1=2 is given by:

U�(k)j+1=2 =
1
Rt

∫ Rt

0
�(k)j+1=2(t) dt=

1
4k

∫ xj+1=2

xp+1=2−4k

�(k)j (x) dx (B4)

where 4k = �kRt is the horizontal distance covered by the kth characteristic during time Rt
(also called the domain of dependence associated to the kth characteristic). Index p denotes
the cell in which the foot of the characteristic is located.
Assume that p= j. If both �1 and �2 are positive in cell j (supercritical �ow), then both

components of U�j are fully determined in cell j, because both domains of dependence of the
interface j + 1=2 lie in cell j. The left state Mj+1=2; L is then deduced from:

Mj+1=2; L=K U�j (B5)

Pipe transients are characterized by subcritical �ows. In that case, the foot of the second
characteristic only lies in cell j, whereas the @rst one has its foot in cell j+1. Consequently,
the value of the @rst component U�(1)j of U�j does not have any in�uence on the solution of the
Riemann problem at interface j+1=2. Then the same relationship can be used for both U�(1)j+1=2
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and U�(2)j+1=2:

U�(k)j =
1
42

∫ xj+1=2

xj+1=2−42
�(k)j (x) dx; k=1; 2 (B6)

If matrix K is assumed to be constant over the integration interval, substituting Equation (B5)
into Equation (B6) gives:

Mj+1=2; L=
1
42

∫ xj+1=2

xj+1=2−42
Mj(x) dx (B7)

A similar reasoning gives the formula for the right state of the Riemann problem:

Mj+1=2; R=
1
41

∫ xj+1=2

xj+1=2−41
Mj+1(x) dx (B8)

Therefore, in the subcritical case, the left and right states of the Riemann problem can be
obtained by simply averaging the reconstructed pro@le over the domain of dependence of the
characteristics.
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